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Abstract

We present FinBoost, a survival modelling method for financial
transactions to predict time-to-event outcomes. Leveraging a dataset
of over 21.8 million records with 90 engineered features, we eval-
uate classical statistical models, deep learning approaches, and
tree-based ensemble methods. Our experiments show that XGBoost
achieves the highest predictive performance, with a maximum con-
cordance index of 0.8472178861. The proposed approach enables
accurate and timely risk assessment in financial systems. The open-
source implementation is available at: GitHub Code.
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1 Introduction

Survival modelling is a statistical technique that is employed to ap-
proximate the duration of time before an event happens. Although
widely applied in medical and technological fields, survival analy-
sis is not often employed to predict financial failures [7]. Finance
is a sensitive domain inherently defined by risk over time, mak-
ing the prediction of event timing critical. Such foresight can help
businesses take proactive measures to avoid financial distress or
bankruptcy. More commonly, it allows firms to mitigate the costs
associated with financial distress and business failure [3]. In fi-
nance, the event of interest includes a risk-related occurrence such
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as default, bankruptcy, or customer churn. The observation time
starts on a specific point referred to as the index event and ends
with the outcome event, also referred to as the event of interest.
Those subjects who do not encounter the outcome event within
the observation period are said to be censored, which represents
incomplete observations. However, survival datasets in finance are
often difficult to obtain due to their sensitive or confidential nature.
Many deep learning-based survival analyses rely on proprietary
economic data requiring costly subscriptions or on medical datasets
with restricted access. [4].

2 Methodology

Algorithm 1 presents the FinBoost method, which combines multi-
ple strategies using performance-weighted ensemble predictions.

Algorithm 1 FinBoost

1: procedure TRAIN(X;rqin, Yzrain)

2 Define three strategies: Conservative, Aggressive, Balanced
3 Assign weights based on transition performance
4 for each strategy do

5: Transform target using time and status

6 Train XGBoost with the strategy’s parameters
7 end for

8: end procedure

9: procedure PREDICT(Xyest)

10: for each trained model do

11: Compute predictions

12: end for

13: Return weighted average of all predictions

14: end procedure

2.1 Dataset Description

The starting dataset for this study predicts the time to the next
financial event, covering 16 possible transitions among Borrow,
Deposit, Repay, Withdraw, and Liquidated. It contains over 21.8 mil-
lion records with 90 engineered features, supporting 16 prediction
tasks, and model performance is evaluated using the C-index.

2.2 Models Used

We evaluated a range of survival models, including classical statis-
tical approaches, parametric models, and modern machine learning
techniques. The Cox Proportional Hazards model [2] served as a
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baseline, while the Weibull Accelerated Failure Time (AFT) model
captured parametric survival patterns. We also experimented with
deep learning via DeepSurv [5] and tree-based gradient boosting
methods, including XGBoost [1] and LightGBM [6], which effec-
tively model complex nonlinear relationships and feature interac-
tions. Among all models, XGBoost achieved the highest predictive
performance, attaining the best concordance index.

2.3 Feature Engineering

We enhanced the dataset with transition-specific features to im-
prove predictive performance.

Base survival features included user risk scoring (liquida-
tion_risk, repayment_ratio, leverage_ratio), activity patterns (ac-
tivity_volatility, transaction_frequency), market interaction features
(market_borrow_ratio, market_deposit_ratio, market_volatility_impact),

temporal indicators (is_business_hours, is_month_end, temporal_interaction

and hazard rates (borrow_hazard, deposit_hazard) to support better
C-index performance.

Transition-specific features were engineered for each out-
come: Liquidated (liquidation_risk_score, collateral_health, liqui-
dation_proximity), Repay (repay_urgency, debt_maturity, repay_capacity),

Withdraw (withdraw_opportunity, withdraw_timing, liquidity_preference),

Deposit (deposit_attractiveness, deposit_timing, deposit_momentum),
and Borrow (borrow_necessity, borrow_capacity, borrow_risk_tolerance).
Additional cross-transition interaction features captured the
user_activity_diversity and market_engagement, temporal features
included weekend_risk and month_end_risk indicators, and volatil-
ity features measured amount_volatility and market_deviation,
resulting in a feature-enhanced dataset tailored for each event tran-

sition.

3 Results and Discussion

3.1 Comparative Analysis

Our experiments show that XGBoost achieves the highest predic-
tive performance, outperforming classical and ensemble survival
models.
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Figure 1: C-index Comparison Across Models

Figure 2 presents the detailed C-index values for all 16 event pairs
across the evaluated models, offering a comprehensive comparison
of model performance for each transition.
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Figure 2: C-index Across Various Index-Outcome Event Pairs

4 Conclusion

In this work, we introduced FinBoost, a technique of predicting
time-to-financial events based on survival modelling techniques.
Our experiments show that XGBoost is effective compared to the
other models, and the achieves the highest concordance index is
0.8472178861. The results show that machine learning—based sur-
vival analysis enables accurate, timely risk assessments for proac-
tive financial decision-making.
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