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Abstract
We present AutoFinSurv, a reproducible GPU-accelerated frame-
work for financial survival analysis based on the XGBoost-Cox
model. Our method integrates temporal data splitting, unified pre-
processing, and Optuna-based hyperparameter optimization. Ex-
periments on the official FinSurvival Challenge datasets demon-
strate that AutoFinSurv consistently improves concordance index
(C-index) across multiple event pairs, achieving an overall mean
C-index of 0.8483 in the Codabench Development Phase and 0.8490
on the Final Phase leaderboard, ranking among the top submissions.

ACM Reference Format:
Rong-Lin Jian. 2025. AutoFinSurv: An Automatic XGBoost-Cox Optimiza-
tion Framework for Financial Survival Analysis. In . ACM, New York, NY,
USA, 2 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
The FinSurvival Challenge [5] benchmarks predictive models for
time-to-event outcomes in decentralized finance. Each instance
involves a financial “index event” (e.g., Borrow, Deposit, Withdraw)
and predicts the probability of subsequent “outcome events” (e.g.,
Repay, Liquidated). Unlike static classification, survival modeling
must capture temporal dependencies while handling censored sam-
ples [3]. Our goal is to build a transparent, modular system that
can be reproduced end-to-end on GPU hardware.

2 Methodology
2.1 Temporal Split and Preprocessing
For each event pair, data before July 1, 2023–30 days were used
for training, and data after July 1, 2023+30 days for validation.
Categorical fields were reduced to their tenmost frequent categories
(+“Other”) and one-hot encoded, while numerical features were
standardized using StandardScaler. This ensures alignment of
train/test features without leakage.

Training and Validation Split. Tomaintain balanced event–censor
distributions, all train/validation splits were stratified by event sta-
tus (status) to preserve consistent positive–negative ratios. A fixed
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random seed (seed=42) was used for all experiments to guarantee
reproducibility.

2.2 Model
Weemployed the XGBoost framework [2]with the Cox proportional-
hazards objective [3]. Each label was converted to signed time:

𝑦𝑖 =

{
+𝑡𝑖 , if the event occurred,
−𝑡𝑖 , if censored.

(1)

The Cox partial likelihood loss was defined as:
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)
, (2)

where 𝜂𝑖 = 𝑓𝜃 (𝑥𝑖 ) is the predicted log-risk score. Training employed
the GPU-accelerated tree builder (tree_method=gpu_hist) on an
NVIDIA Titan RTX.

2.3 Hyperparameter Optimization
Baseline Configuration. Before optimization, a fixed baseline con-

figuration was used across all event pairs for fair comparison: learn-
ing rate = 0.05, maximum depth = 6, subsample = 0.80, colsam-
ple_bytree = 0.8, min_child_weight = 5, reg_lambda = 1.0, and
reg_alpha = 0.1. This served as the reference for subsequent Op-
tuna searches.

Optuna [1] performed Bayesian optimization over the follow-
ing space: learning_rate [0.03–0.05], max_depth [4–6], subsample
[0.75–0.9], colsample_bytree [0.7–0.9], min_child_weight [3–8],
reg_lambda [0.5–2.0], reg_alpha [0.05–0.5]. Each study ran 20 trials
× 1000 boosting rounds with early stopping (50 rounds).

Experiment Logging and Artifacts. During tuning, each task’s
results were logged in real time: C-index scores and parameter
configurations were appended to a log file, summarized in CSV for-
mat, and stored as JSON for reproducibility. Additionally, a bar plot
(xgb_refined_tuning_delta.png) was automatically generated
to visualize per-task ΔC-index improvements.

3 Experiments
3.1 Hardware and Setup

• GPU: NVIDIA Titan RTX (24 GB VRAM)
• OS: Ubuntu 22.04 + CUDA 12.1
• Libraries: XGBoost 2.1.1 [6], Optuna 3.6 [1], Scikit-learn 1.5,
Lifelines [4]

• Dataset: Official FinSurvival participant_data-001
• Metric: Concordance index (C-index)
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Table 1: Comparison of AutoFinSurv performance on the Codabench Development and Final Phases. Scores were computed by
the official Codabench scoring program using a deterministic 100,000-record subsample per dataset.

Dataset Baseline (Dev) AutoFinSurv (Dev) AutoFinSurv (Final)

Repay→Deposit 0.8000 0.8092 0.8105
Repay→Withdraw 0.7874 0.7850 0.7863
Repay→Liquidated 0.7036 0.7138 0.7162
Repay→Borrow 0.8076 0.8131 0.8147
Deposit→Repay 0.8948 0.8979 0.8973
Deposit→Withdraw 0.8495 0.8461 0.8466
Deposit→Liquidated 0.9065 0.9116 0.9104
Deposit→Borrow 0.8924 0.8943 0.8962
Withdraw→Repay 0.9415 0.9434 0.9407
Withdraw→Deposit 0.8388 0.8372 0.8371
Withdraw→Liquidated 0.9671 0.9704 0.9672
Withdraw→Borrow 0.9354 0.9510 0.9488
Borrow→Repay 0.8314 0.8288 0.8295
Borrow→Deposit 0.7975 0.7998 0.8020
Borrow→Withdraw 0.7566 0.7887 0.7884
Borrow→Liquidated 0.7466 0.7840 0.7919

Mean 0.8410 0.8483 0.8490

Each task required approximately 1.2 GPU-hours, totaling around
320 GPU-hours for the full set of event pairs.

3.2 Leaderboard Performance (Codabench
Evaluation)

Both Development (public) and Final (private) Phases on Codabench
use the same evaluation pipeline, which deterministically subsam-
ples 100,000 test records per dataset for computing the C-index.
Table 1 compares results across Baseline, AutoFinSurv (Develop-
ment), and AutoFinSurv (Final) phases. Themean C-index improved
from 0.8410 (baseline) to 0.8483 (Development) and remained stable
at 0.8490 on the Final Phase leaderboard, demonstrating strong
generalization between public and private sets. The tuned param-
eters for each event pair were reused via xgb_cox_submit.py to
produce final predictions on the official test features.

4 Discussion and Conclusion
AutoFinSurv achieved consistent C-index gains across most event
pairs, with the largest improvements on Borrow→Withdraw and
Borrow→Liquidated. This confirms that Optuna-driven tuning ef-
fectively enhances model robustness across heterogeneous finan-
cial domains. The framework’s unified preprocessing, temporal
segmentation, and GPU-accelerated optimization enable reliable
generalization for survival prediction. Its modular design supports
future integration with FPBoost or DeepCoxCC ensembles. All re-
sults are fully reproducible through logged CSV, JSON, and TXT
artifacts.
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