Finsurvival Solution by Afinit - Hierarchical Feature Engineering

Jaehyeok Shin
Afinit
Seoul, South Korea
jace.shin@balancehero.com

Abstract

We present a hierarchical feature engineering framework for sur-
vival modeling that addresses incomplete transaction data and data
leakage in the FinSurvival Challenge [2]. Our approach introduces a
multi-level indexing strategy that processes over 32 million records
and generates more than 10,000 features across 10 tables. Key in-
novations include advanced missing transaction recovery, a hierar-
chical data architecture with eight core indices, and strict leakage
prevention mechanisms. The framework uses the XGBoost Accel-
erated Failure Time (AFT) survival model with two-stage training
and demonstrates significant improvements in the concordance
index (C-index).

Keywords

FinSurvival, DeFi, Survival Analysis, XGBoost AFT, Feature Engi-
neering, Missing Data Imputation, Data Leakage Prevention, Time-
to-Event Prediction

1 Introduction

We present a hierarchical feature engineering framework for the
FinSurvival Challenge [2] that processes over 32 million records
and generates more than 10,000 features across 10 tables by means
of a multi-level indexing strategy.

The primary contributions are: (1) hierarchical data architecture
with 8 core indices enabling efficient joins across 12 data tables, (2)
advanced missing data estimation using temporal and count-based
inference, (3) strict data leakage prevention mechanisms ensur-
ing temporal integrity, and (4) comprehensive feature engineering
pipeline using XGBoost Accelerated Failure Time (AFT) Survival
model with two-stage training.

The framework reconstructs complete transaction histories from
incomplete data under strict temporal constraints and yields signif-
icant improvements in the concordance index (C-index).

2 Methodology
2.1 Data Architecture and Indexing Strategy

Our feature engineering approach employs a comprehensive data
architecture that captures multiple dimensions of behavior and
market dynamics through structured indices and aggregations.

2.1.1 Core Indexing Strategy. The feature engineering process trans-
forms raw data into a structured, multi-dimensional dataset with hi-
erarchical indices, including row_index, Index, user_index, trx_index,
market_index, timestamp, liquidation_timestamp, liquidation_index,
and liquidated_index (see Appendix A.1 for details).

ICAIF °25, Singapore
2025. ACM ISBN 978-1-4503-XXXX-X/2018/06
https://doi.org/XXXXXXX.XXXXXXX

Hyeonwoo Jeon
Afinit
Seoul, South Korea
bentley.jeon@balancehero.com

2.1.2 Data Tables Structure. The framework processes 12 intercon-
nected data tables with over 32 million records including master
table (32M rows), labels (5.4M rows), transactions (8.3M rows),
market data (8.3M rows), liquidation events (11K rows), user-pool
relationships (7.3M rows), and estimated data (see Appendix A.2
for details).

2.1.3 Key Design Principles.

(1) Hierarchical Indexing: Multi-level indices enable efficient
joins and aggregations

(2) Relational Integrity: All tables can be joined using hierar-
chical indices to ensure temporal consistency and referential
integrity

(3) Normalization: Left necessary columns for each table for
efficient joins and aggregations

(4) Scalable Architecture: Modular design supports easy ex-
tension and modification

2.2 Missing Data and Log Imputation Strategy

Our approach handles missing data using sophisticated temporal
and behavioral inference methods, identifying gaps in transaction
sequences and liquidation events, then estimating missing informa-
tion using multiple validation approaches.

2.2.1 Missing Data Types and Estimation Methods. The framework
addresses six types of missing data with specialized estimation
techniques (see Appendix A.3 for details).

2.2.2 Estimation Principles. The missing data estimation follows
key principles:

(1) Temporal Ordering: All estimates maintain temporal or-
dering and logical sequence

(2) Count-based Validation: Uses transaction counts and amounts

to validate estimates

2.2.3 Final Estimation Strategy. The final estimation process com-
bines observed data with estimated missing data to create compre-
hensive datasets including estimated transactions (8.3M records),
estimated liquidations (20.9K events), and estimated liquidated in-
formation (15.4K updates) (see Appendix A.3 for details). This ap-
proach provides a complete picture of user behavior for feature
engineering.

2.3 Leakage Prevention Strategy

A critical aspect of our approach is the implementation of strict
leakage prevention criteria to ensure that no future information is
used in feature creation, which is essential for maintaining survival
analysis integrity and preventing overoptimistic performance.

https://doi.org/XXXXXXX.XXXXXXX

ICAIF °25, November 15-18, 2025, Singapore

2.3.1 Leakage Prevention Criteria. The framework implements
strict temporal constraints for different types of information (see
Appendix A.4 for details) and follows key prevention principles:

(1) Temporal Ordering: All features use only information avail-
able at transaction time

(2) Strict Boundaries: Window functions use rangeBetween(-1
* period, -1) to exclude current transactions

(3) Join Constraints: All joins include temporal constraints to
prevent future information leakage

2.3.2 Implementation Patterns. We adopt four implementation pat-
terns to prevent data leakage: user transaction window functions,
liquidation event joins, liquidated information joins, and market
period features (see Appendix A.6 for code examples).

2.4 Feature Creation Strategy

Feature creation relies on two complementary approaches—temporal
joins and window functions—for time-aware feature generation
(see Appendix A.5 for details).

2.5 Model Training Strategy

Our model training strategy employs XGBoost Accelerated Failure
Time (AFT) Survival model [1] with a two-stage training approach
and comprehensive feature selection methodology.

2.5.1 Algorithm Selection. We adopt the XGBoost AFT survival
model [1], which was reported as the best-performing approach in
the FinSurvival Challenge [2].

2.5.2 Feature Selection Strategy. The feature selection process fol-

lows a two-step approach: (1) basic statistics selection to remove

features with extreme sparsity, and (2) XGBoost importance-based

selection with cumulative importance ratio threshold of 0.995.
The cumulative importance ratio is defined as follows:

e Importance Ratio: r; = Z"f_lf where f; is the importance
j=1JJ

of feature i
e Cumulative Importance Ratio: C; = 2?:1 r; where fea-
tures are ordered by descending importance

2.5.3 Two-Stage Training Process. Our training strategy employs a
two-stage approach to capture both general and specific patterns:

Stage 1: Train by Same Outcome Event. Train the pattern for out-
come event from other index event types to learn general patterns
across different index events for the same outcome.

Stage 2: Incremental Training. Focus on training the pattern for
exact index event - outcome event pair to specialize the model for
specific index-outcome event combinations (see Appendix A.8 for
hyperparameters).

This two-stage approach enables the model to first learn general
survival patterns across different transaction types, then fine-tune
for specific event combinations, resulting in improved concordance
index performance.

Shin et al.

3 Results

3.1 Feature Engineering Results

The feature engineering pipeline creates comprehensive feature
sets across 10 feature tables, generating over 10,000 unique features
with transaction features providing the largest feature set at 4,967
features per record (see Appendix A.8 for detailed breakdown).

3.2 Evaluation Results

As Table 1 shows, the final model improves the C-index over the
baseline across all 16 event pairs on development, validation, and
test splits, with the largest gains observed for liquidation outcomes
on the test set.

4 Conclusion

We presented a hierarchical feature engineering framework for
FinSurvival that achieves strong empirical performance.

4.1 Effectiveness

The framework achieves a higher concordance index (C-index)
than the baseline. The proposed feature engineering methodology
is straightforward and broadly applicable to financial settings.

4.2 Future Work

While this work establishes a solid foundation for survival analysis,
several promising directions remain for future research:

4.2.1 Masked Multi-task Learning. Leveraging the multi-label na-
ture of the dataset at the trx_index level, we can implement masked
multi-task learning to predict multiple outcomes from the same
index event, focusing on learning patterns for multiple outcome
events rather than different index events for the same outcome.

4.2.2 Missing Transaction-based Data Augmentation. The estimated
missing transactions could be incorporated as additional training
samples to improve model robustness and generalization through
data augmentation techniques.

4.2.3 Prediction Value as Input Variable for Other Tasks. A multi-
task learning approach where prediction values from one task serve
as input features for other related tasks, capturing complex inter-
dependencies between different event types to improve overall
prediction accuracy.

These future directions represent promising avenues for extend-
ing the current framework and improving survival analysis perfor-
mance, though time constraints prevented their implementation in
the current work.

A Appendix
A.1 Core Indexing Strategy Details

The feature engineering process transforms raw transaction data
into a structured, multi-dimensional dataset with hierarchical in-
dices:
e row_index: Sequential identifier for row number of each
CSV file
¢ Index: Primary key for master table combining index_event,
outcome_event, data_split, and row_index

Finsurvival Solution by Afinit - Hierarchical Feature Engineering

ICAIF *25, November 15-18, 2025, Singapore

Table 1: C-index comparison between baseline and final models across event pairs

index_event | outcome_event | baseline_dev | baseline_val | baseline_test | Final_dev | Final _val | Final_test
deposit borrow 0.978 0.920 0.788 0.994 0.993 0.910
repay borrow 0.926 0.864 0.743 0.986 0.984 0.970
withdraw borrow 0.996 0.964 0.844 0.998 0.998 0.980
borrow deposit 0.982 0.898 0.738 0.989 0.986 0.950
repay deposit 0.984 0.915 0.741 0.991 0.989 0.940
withdraw deposit 0.973 0.940 0.806 0.995 0.994 0.980
borrow repay 0.946 0.872 0.811 0.987 0.984 0.910
deposit repay 0.991 0.928 0.791 0.994 0.993 0.910
withdraw repay 0.995 0.952 0.806 0.997 0.996 0.930
borrow withdraw 0.982 0.913 0.687 0.988 0.985 0.920
deposit withdraw 0.957 0.901 0.808 0.987 0.983 0.950
repay withdraw 0.985 0.919 0.673 0.990 0.986 0.910
borrow liquidation 0.986 0.925 0.565 0.997 0.993 0.810
deposit liquidation 0.988 0.930 0.800 0.993 0.983 0.820
repay liquidation 0.991 0.927 0.538 0.998 0.997 0.810
withdraw liquidation 0.994 0.933 0.791 0.999 0.996 0.890
Total Score 0.978 0.919 0.745 0.993 0.990 0.912

e user_index: User snapshot identifier at transaction time
(sum of user transaction counts)

e trx_index: Primary key for transactions combining user
and user_index

e market_index: Market snapshot identifier at transaction
time (sum of market transaction counts)

e timestamp: Primary key for market_timestamp

o liquidation_timestamp: Timestamp for liquidation events
(timestamp + timeDiff)

e liquidation_index: Primary key for liquidation events

o liquidated_index: Primary key for liquidated information
updates

A.2 Data Tables Structure Details

The framework processes 12 interconnected data tables with over
32 million records:

e Master Table (df): 32,028,004 rows with 99 columns con-
taining the complete dataset

e Labels: 5,427,097 rows for training with survival analysis
labels

e Transactions: 8,262,966 rows with normalized transaction
data

e Market Data: 8,262,966 rows with market-level snapshots

e Liquidation Events: 10,966 observed liquidation events

e User-Pool Relationships: 7,333,392 user-pool combina-
tions

e Estimated Data: Complete datasets combining observed
and estimated missing data

A.3 Missing Data Types and Estimation
Methods

The framework addresses six types of missing data through spe-
cialized estimation techniques:

e Missing First Transaction: Estimates user’s missing first
transaction using timestamp calculation when user_index =
2

e Missing First Two Transactions: Estimates user’s missing
first and second transactions when user_index = 3

e Missing Middle Transaction: Estimates gaps between ob-
served transactions using temporal bounds

e Missing Observed Transaction: Detects missing observed
transactions by comparing with actual transactions

e Missing Liquidation: Estimates missing liquidation events
when liquidated information was updated but no liquidation
event was recorded

e Missing Liquidated Information: Estimates missing liq-
uidated information when liquidation events exist but no
liquidated information update was recorded

A.3.1 Final Estimation Strategy Details. The final estimation pro-
cess combines observed data with estimated missing data to create
comprehensive datasets:

¢ Estimated Transactions: 8,271,294 complete transaction
records (observed + estimated)

e Estimated Liquidations: 20,891 complete liquidation events
(observed + estimated)

e Estimated Liquidated Information: 15,363 complete liq-
uidated information updates (observed + estimated)

A.4 Leakage Prevention Criteria Details

The framework implements strict temporal constraints for different
types of information:

e User Transactions: Use past user transaction information
from first transaction to user_index transaction with window
functions
Market Transactions: Use past market information from
the oldest info to market_index updated (inherently histori-
cal)
Liquidation Events: Use past liquidation event information
when liquidation_timestamp < current_trx_timestamp
Liquidated Information: Use liquidated information when
liquidated updated timestamp_ub < current_trx_timestamp
e Any Information: Use any kind of past information when
information_timestamp < current_trx_timestamp

A.5 Feature Creation Strategy Details
A.5.1 Temporal Join Strategy. The first strategy uses temporal joins
to attach historical information to each unique key:

¢ Unique Key Identification: Each feature creation process
identifies appropriate unique keys (user, market, pool com-
binations)

ICAIF °25, November 15-18, 2025, Singapore

e Temporal Join Logic: Joins current records with historical
records where historical_timestamp < current_timestamp

e Range Constraints: Applies appropriate time windows
(hour, day, week, month) to limit historical data scope

e Aggregation: Performs aggregations (count, sum, mean,
max, min) on joined historical data

A.5.2 Window Function Strategy. The second strategy uses win-
dow functions with temporal partitioning and ordering to create
features within defined time ranges:
e Partitioning: Groups data by right entity (user, pool, etc)
e Temporal Ordering: Orders data by timestamps within
each partition
¢ Range Definition: Defines appropriate time ranges using
rangeBetween(-1 * period, -1)
e Window Aggregation: Applies window aggregation func-
tions for feature

A.6 Implementation Code Examples

A.6.1

window = (
Window.partitionBy("user").orderBy("user_index")

)

month_window =

User Transaction Window Functions.

window.rangeBetween(-1 * month, -1)

A.6.2 Liquidation Event Joins.
cond = liquidation["user"] ==
cond &= (

trx["timestamp"] >= liquidation["liquidation_timestamp"]

)
log =

trx["user"]

trx.join(liquidation, cond)

A.6.3 Liquidated Information Joins.
cond = liquidated["user"] == trx["user"]
cond &= (
liquidated["timestamp_ub"] <= trx["timestamp"]
)
log = trx.join(liquidated, cond)
A.6.4 Market Period Features.
market_timestamp.rolling(
index_column="1log_at",
period=period,
closed="1left",
)

A.7 Model Training Hyperparameters

Table 2 summarizes the hyperparameters used for feature selection
and two-stage training process.

Table 2: Hyperparameters for Feature Selection and Two-
Stage Training

Shin et al.

A.8 Feature Engineering Results Details

The feature engineering pipeline creates comprehensive feature
sets across 10 feature tables:

o Market Features: 5,622,939 rows with 342 features for mar-
ket trend analysis

e Pool Features: 6,983,281 rows with 540 features for pool-
specific characteristics

e User-Pool Features: 7,333,392 rows with 520 features for
user-pool relationships

¢ Liquidation Features: 506,818 rows with 434 features for
liquidation events

¢ Estimated Liquidation Features: 616,085 rows with 290
features for estimated liquidation events

e Liquidated Features: 616,537 rows with 24 features for
liquidated information

e Estimated Liquidated Features: 616,537 rows with 19 fea-
tures for estimated liquidated information

e Transaction Features: 8,262,966 rows with 4,967 features
for comprehensive transaction analysis

e Estimated Transaction Features: 8,271,294 rows with 4,967
features for estimated transactions

e Liquidation Transaction Features: 506,818 rows with
4,960 features for liquidation-transaction relationships

References

[1] Avinash Barnwal, Hyunsu Cho, and Toby Dylan Hocking. 2020. Survival regression
with accelerated failure time model in XGBoost. arXiv preprint arXiv:2006.04920
(2020). https://arxiv.org/abs/2006.04920

[2] Aaron Green, Zihan Nie, Hanzhen Qin, Oshani Seneviratne, and Kristin P Bennett.
2025. FinSurvival: A Suite of Large Scale Survival Modeling Tasks from Finance.
arXiv preprint arXiv:2507.14160 (2025). https://arxiv.org/abs/2507.14160

Received 20 October 2025

Process learning rate | earlyStopRounds
Feature Selection 0.35 2
Train by Same Outcome Event 0.2 2
Incremental Training 0.03 10

https://arxiv.org/abs/2006.04920
https://arxiv.org/abs/2507.14160

	Abstract
	1 Introduction
	2 Methodology
	2.1 Data Architecture and Indexing Strategy
	2.2 Missing Data and Log Imputation Strategy
	2.3 Leakage Prevention Strategy
	2.4 Feature Creation Strategy
	2.5 Model Training Strategy

	3 Results
	3.1 Feature Engineering Results
	3.2 Evaluation Results

	4 Conclusion
	4.1 Effectiveness
	4.2 Future Work

	A Appendix
	A.1 Core Indexing Strategy Details
	A.2 Data Tables Structure Details
	A.3 Missing Data Types and Estimation Methods
	A.4 Leakage Prevention Criteria Details
	A.5 Feature Creation Strategy Details
	A.6 Implementation Code Examples
	A.7 Model Training Hyperparameters
	A.8 Feature Engineering Results Details

	References

